MATH 2060 TUTOr
Ihm 6.4.1 (Taylor's Thm)
Let $\cdot n \in \mathbb{N}$

- $f:[a, b] \rightarrow \mathbb{R}$ s.t. $(a<b)$
- $f^{\prime}, \ldots, f^{(m)}$ are cts on $[a, b]$ and
- $f^{(n+1)}$ exists on (a, b).

If $x_{0} \in(a, b)$, then $\forall x \in(a, b), \exists c$ between x_{0} and x s.t.

$$
f(x)=\underbrace{f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\cdots+\frac{f^{(m)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}}_{P_{n}(x)}+\frac{\frac{f^{(n+1)}(c)}{(n+1)!}\left(x-x_{0}\right)^{n+1}}{R_{n}(x)}
$$

n-th Taylor's Polynomial of f at x_{0}
remainder (Lagrange form)
$\xi 6.4$
9. If $g(x):=\sin x$, show that the remainder term in Taylor's Theorem converges to zero as $n \rightarrow \infty$ for each fixed x_{0} and x.

Ans: Note $(\sin x)^{\prime}=\cos x, \quad(\cos x)^{\prime}=-\sin x \quad \forall x \in \mathbb{R}$.
So g is indefinitely differentiable and satisfies the conditions of Taylor's Thm for all $n \in \mathbb{N}$.

Fix $x_{0}, x \in \mathbb{R}$.
The n-th remainder term in Taylor's Thu is
$R_{n}(x)=\frac{g^{(n+1)}\left(C_{n}\right)}{(n+1)!}\left(x-x_{0}\right)^{n+1}$ for some c_{n} between x_{0}, x.
Since $g^{(n+1)}(x)= \pm \sin x$ or $\pm \cos x$, we have

$$
\left|R_{n}(x)\right|=\frac{\left|g^{n+1}\left(c_{n}\right)\right|}{(n+1)!}\left|x-x_{0}\right|^{n+1} \leqslant \frac{\left|x-x_{0}\right|^{n+1}}{(n+1)!}=: a_{n}
$$

Want: $\lim \left(a_{n}\right)=0$. Use Ratio Test!
Note $\lim _{n \rightarrow \infty}\left(\frac{a_{n+1}}{a_{n}}\right)=\lim _{n \rightarrow \infty}\left(\frac{\left|x-x_{0}\right|}{n+1}\right) \quad$ (assume $x_{0} \neq x$)

$$
=0<1
$$

By Ratio Test, $\lim _{n \rightarrow \infty}\left(a_{n}\right)=0$
Therefore $\lim _{n \rightarrow \infty}\left(R_{n}(x)\right)=0$ by Squeeze Thy.
10. Let $h(x):=e^{-1 / x^{2}}$ for $x \neq 0$ and $h(0):=0$. Show that $h^{(n)}(0)=0$ for all $n \in \mathbb{N}$. Conclude that the remainder term in Taylor's Theorem for $x_{0}=0$ does not converge to zero as $n \rightarrow \infty$ for $x \neq 0$.
So h is smooth but not analytic (ϵ locally given by a power series)
Ans: Clearly $h(x)$ is infinitely diff. for $x \neq 0$
Apply Leibniz'rule to $h^{\prime}(x)=\frac{2}{x^{3}} e^{-1 / x^{2}}=\frac{2}{x^{3}} h(x)$, we have

$$
\begin{aligned}
h^{(n+1)}(x) & =\frac{d^{n}}{d x^{n}}\left(\frac{2}{x^{3}} h(x)\right)=\sum_{k=0}^{n}\binom{n}{k}\left(\frac{2}{x^{3}}\right)^{(n-k)} h^{(k)}(x) \\
& =\sum_{k=0}^{n}\binom{n}{k}(2)(-3)(-4) \cdots(-(n-k+2)) x^{-(n-k+3)} h^{(k)}(x) \\
& =\sum_{k=0}^{n}\binom{n}{k}(-1)^{n-k}(n-k+2)!\frac{h^{(k)}(x)}{x^{n-k+3}} \quad \text { (*) }
\end{aligned}
$$

We prove by induction on $n \geqslant 0$ that

1) $\lim _{x \rightarrow 0} h^{m}(x) / x^{m}=0 \quad \forall m \in \mathbb{N}$
2) $\quad h^{(n+1)}(0)=0$.

When $n=0$: 1) $\forall m \in \mathbb{N}$, by L'Hopital's rule,

$$
\lim _{y \rightarrow+\infty} \frac{y^{m}}{e^{y}}=\lim _{y \rightarrow+\infty} \frac{m y^{m-1}}{e^{y}}=\cdot \cdot=\lim _{y \rightarrow+\infty} \frac{m!}{e^{y}}=0
$$

Let $y=1 / x^{2}$. Then $x \rightarrow 0 \Leftrightarrow y \rightarrow+\infty$.
Hence $\lim _{x \rightarrow 0} \frac{h(x)}{x^{m}}=\lim _{x \rightarrow 0} \frac{\left(1 / x^{2}\right)^{m}}{e^{1 / x^{2}}} \cdot x^{m}=0$
2) $h^{\prime}(0)=\lim _{x \rightarrow 0} \frac{h(x)-h(0)}{x-0}=0$

Suppose 1), 2) are true for n.

Now, by (*),

$$
\lim _{x \rightarrow 0} \frac{h^{(n+1)}(x)}{x^{m}}=\sum_{k=0}^{n}\binom{n}{k}(-1)^{n-k}(n-k+2)!\left(\lim _{x \rightarrow 0} \frac{h^{(k)}(x)}{x^{n-k+3+m}}\right)=0
$$

Moreover, $\quad h^{(n+2)}(0)=\lim _{x \rightarrow 0} \frac{h^{(n+1)}(x)-h^{(n+1)}(0)}{x-0}=0$
This completes the induction.
Finally, $\quad R_{n}(x)=h(x)-\sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k}=h(x)$
and so $\quad \lim _{n \rightarrow \infty} R_{n}(x)=h(x) \neq 0$ for $x \neq 0$
the ines is clearly false when $x=0$.
11. If $x \in(0,1]$ and $n \in \mathbb{N}$, show that

$$
\left|\ln (1+x)-\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots+(-1)^{n-1} \frac{x^{n}}{n}\right)\right|<\frac{x^{n+1}}{n+1}
$$

Use this to approximate $\ln 1.5$ with an error less than 0.01. Less than 0.001 .
Ans: Let $f(t)=\ln (1+t)$.
Then f is infinitely diff. on $(-1, \infty)$ and

$$
f^{(n)}(t)=\frac{(-1)^{n-1}(n-1)!}{(1+t)^{n}} \quad t>-1, n \in \mathbb{N} .
$$

Fix $x \in(0,1]$ and $n \in \mathbb{N}$.
By Taylor ' Thu, $f(x)=P_{n}(x)+R_{n}(x)$,
where $P_{n}(x)=\sum_{k=0}^{n} \frac{f^{|k|}|0|}{k!} x^{k}=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots+(-1)^{n-1} \frac{x^{n}}{n}$
and for some $C_{n} \in(0, x)$,

$$
R_{n}(x)=\frac{f^{(n+1)}\left(C_{n}\right)}{(n+1)!} x^{n+1}=\frac{1}{n+1} \cdot \frac{(-1)^{n}}{\left(1+C_{n}\right)^{n+1}} x^{n+1}
$$

Now, $\quad\left|R_{n}(x)\right|<\frac{1}{n+1} x^{n+1}$,
and so $\quad\left|f(x)-\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdot \cdot+(-1)^{n-1} \frac{x^{n}}{n}\right)\right|=\left|R_{n}(x)\right|<\frac{1}{n+1} x^{n+1}$.
To approx $\ln (1.5)$, take $x=0.5$.
Then $\left|l_{n}(1.5)-P_{n}(0.5)\right|<\frac{1}{n+1}(0.5)^{n+1}$
When $n=4, \quad \frac{1}{n+1}(0.5)^{n+1}=0.00625<0.01$.
So $\ln (1.5)=P_{4}(0.5)=\frac{77}{192}$ with error less than 0.01 .
15. Let f be continuous on $[a, b]$ and assume the second derivative $f^{\prime \prime}$ exists on (a, b). Suppose that the graph of f and the line segment joining the points $(a, f(a))$ and $(b, f(b))$ intersect at a point $\left(x_{0}, f\left(x_{0}\right)\right.$ where $a<x_{0}<b$. Show that there exists a point $c \in(a, b)$ such that $f^{\prime \prime}(c)=0$.

Ans: By assumption,

$$
f^{\prime}\left(c_{2}\right)=\frac{f(b)-f\left(x_{0}\right)}{b-x_{0}}=\frac{f\left(x_{0}\right)-f(a)}{x_{0}-a}=f^{\prime}\left(c_{1}\right)
$$

Apply MVT to f on $\left[a, x_{0}\right], \exists c_{1} \in\left(a, x_{0}\right)$ s.t.

$$
\frac{f\left(x_{0}\right)-f(a)}{x_{0}-a}=f^{\prime}\left(c_{1}\right)
$$

Apply MVT to f on $\left[x_{0}, b\right], \exists c_{2} \in\left(x_{0}, b\right)$ s.t.

$$
\frac{f(b)-f\left(x_{0}\right)}{b-x_{0}}=f^{\prime}\left(c_{2}\right)
$$

Note $a<c_{1}<c_{2}<b$,
$f^{\prime \prime}$ exists on $(a, b) \Rightarrow f^{\prime}$ cts and diff. on $\left[c_{1}, c_{2}\right]$.
Apply MVT again, $\exists c \in\left(c_{1}, c_{2}\right)$ s.t

$$
f^{\prime \prime}(c)=\frac{f^{\prime}\left(c_{2}\right)-f^{\prime}\left(c_{1}\right)}{c_{2}-c_{1}}=0
$$

Example Consider a function f whose second derivative $f^{\prime \prime}(x)$ exists and is continuous on $[0,1]$. Assume that $f(0)=f(1)=0$ and suppose that there exists $A>0$ such that $\left|f^{\prime \prime}(x)\right| \leq A$ for $x \in[0,1]$. Show that

$$
\left|f^{\prime}\left(\frac{1}{2}\right)\right| \leq \frac{A}{4} \quad \text { and }\left|f^{\prime}(x)\right| \leq \frac{A}{2}
$$

Ans: Apply Taylor's Thu to f with center $1 / 2$, we have $\forall x \in[0,1], \exists C x$ between $1 / 2, x$ s.t

$$
f(x)=f\left(\frac{1}{2}\right)+f^{\prime}\left(\frac{1}{2}\right)\left(x-\frac{1}{2}\right)+\frac{f^{\prime \prime}\left(c_{x}\right)}{2!}\left(x-\frac{1}{2}\right)^{2}
$$

Put $x=1$:

$$
\begin{equation*}
0=f(1)=f\left(\frac{1}{2}\right)+f^{\prime}\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)+f^{\prime \prime}\left(c_{1}\right)\left(\frac{1}{2^{3}}\right) \tag{1}
\end{equation*}
$$

Put $x=0$:

$$
\begin{align*}
0=f(0)= & f\left(\frac{1}{2}\right)+f^{\prime}\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)+f^{\prime \prime}\left(C_{0}\right)\left(\frac{1}{2^{3}}\right) \tag{2}\\
(1)-(2): & 0=f^{\prime}\left(\frac{1}{2}\right)+\frac{1}{8}\left(f^{\prime \prime}\left(C_{1}\right)-f^{\prime \prime}\left(C_{0}\right)\right) \\
\Rightarrow & \left|f^{\prime}\left(\frac{1}{2}\right)\right|
\end{align*}
$$

Fix $a \in(0,1)$. Apply Taylor's Thm to f with center a, we have $\exists C_{0} \in(0, a), \exists C_{1} \in(a, 1)$ s.t.

$$
\begin{align*}
0= & f(1)= \tag{3}\\
0= & f(a)+f^{\prime}(a)(1-a)+\frac{f^{\prime \prime}\left(c_{1}\right)}{2!}(1-a)^{2} \tag{4}\\
-(4)! & f(a)+f^{\prime}(a)(0-a)+\frac{f^{\prime \prime}\left(c_{0}\right)}{2!}(0-a)^{2} \\
\Rightarrow \quad & \quad f^{\prime}(a)+\frac{1}{2}\left[f^{\prime \prime}\left(c_{1}\right)(1-a)^{2}+f^{\prime \prime}\left(c_{2}\right) a^{2}\right] \\
& \\
& \\
& \leqslant \frac{A}{2}[(1-a) \mid+a]=\frac{A}{2}
\end{align*}
$$

(3) $-(4)$:

If $a=0$, (3) $\Rightarrow\left|f^{\prime}(0)\right|=\frac{1}{2}\left|f^{\prime \prime}\left(c_{1}\right)\right| \leqslant \frac{A}{2}$
If $a=1$, (4) $\Rightarrow \quad\left|f^{\prime}(1)\right|=\frac{1}{2}\left|f^{\prime \prime}\left(c_{0}\right)\right| \leqslant \frac{A}{L}$

